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A flexible and accurate method for solving nonlinear, frequency-dependent radiative 
transfer problems by a Monte Carlo technique is developed. The method is based upon 
the concept of effective scattering, wherein a fraction of the radiative energy absorbed is 
instantaneously and isotropically reradiated in a manner analogous to a scattering 
process. The method appears to be unconditionally stable, conserves energy exactly, 
and is suitable for handling either transparent or optically thick media. 

Several authors have experimented with Monte Carlo methods for solving 
time-dependent nonlinear radiation transport problems [l, 21. Unfortunateiy, 
certain deficiencies in the method as hitherto formulated have restricted both its 
Aexibility and range of applicability. For optically thin systems in which the 
radiation field is well out of equilibrium with the matter, the method has been 
reasonably successful, but for systems with even moderately large absorption 
cross-sections, and for systems, generally, which are close to thermodynamic 
equilibrium the method has exhibited objectionable features which include 
unacceptably large fluctuations, large energy imbalances, and the requirement of 
unreasonably small integration cycle times. We wish in this article to describe a 
wholly new approach to the Monte Carlo solution of nonlinear radiation problems, 
which in some measure appears to remove all of the objectionable features mcn- 
tioned above, and which provides an accurate and highly flexible calculational 
tool applicable to a wide variety of frequency-dependent problems. The “implicit- 
ness” of the method is to be interpreted in the sense that the radiation field and 
the material energy density are calculated in a self-consistent manner analogous 
to the implicit finite difference solution of coupled matter and radiation equations 
describing nonequilibrium frequency-dependent radiation diffusion theory [3, 47. 

* This work was performed under the auspices of the U. S. Atomic Energy Commission. 
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As in the case of the finite difference solution, the implicitness of the Monte Carlo 
calculation apparently leads to unconditional stability [5]. 

The basis of all Monte Carlo solutions of radiative transfer problems is the 
generation of radiation energy bundles or “particles” [6] from sources which have 
been calculated on the basis of a current knowledge of the temperature distribution. 
A novel feature of the present Monte Carlo scheme is that only a fraction of the 
total source energy is actually treated in this manner. The remaining fraction is 
treated as though it resulted from an isotropic scattering process. The resulting 
radiation transport equation contains, in addition to the normal scattering terms, 
“effective” scattering terms which may be interpreted physically as the absorption 
and isotropic reemission of radiation [7]. Correspondingly, the true frequency- 
dependent absorption cross section can be regarded as composed in part of 
effective absorption and effective scattering. The portion of the true absorption 
cross section devoted to effective scattering depends on the integration cycle time, 
Planck mean cross section, and temperature. 

The concept of effective scattering is an exceedingly useful one for several 
reasons. Without it the absorption of radiation particles and their redistribution 
in angle and frequency from newly created temperature dependent sources must 
be carried out over exceedingly short integration cycle times if the medium is 
strongly absorbing. If effective scattering is employed under these circumstances, 
arbitrary integration cycle times can be used, and the absorption and recreation of 
photons takes place as an instantaneous scattering process with an actual enhance- 
ment in the accuracy of the calculation. The enhancement in accuracy comes about 
because photons are reemitted from the place in which they were absorbed which 
is what occurs physically. In the more conventional Monte Carlo treatment, on 
the other hand, photons are absorbed but reemitted in a distribmion which 
normally is uniform in position over the entire spatial cell in which the temperature 
is assumed constant, with a consequent loss in information. When effective 
scattering is used and the medium is strongly absorbing, the only important effect 
of spatially discretizing the temperature is on the variation of the cross sections. 
Otherwise the spatial and, for that matter, the temporal accuracy of the source 
term in the radiation transfer equation should be limited only by fluctuations 
inherent in the Monte Carlo process. The accuracy with which source terms are 
treated suggests that the resulting Monte Carlo solution to the nonlinear radiation 
transfer problem should be valid under circumstances when difCusion theory 
normally applies [8]. That the Monte Carlo treatment simulates a diffusion process 
in strongly absorbing situations in a natural way is evident from the fact that the 
effective scattering cross section becomes nearly equal to the true absorption 
cross section, and the transport of radiation is governed almost entirely by iso- 
tropic scattering with a short mean free path. 

A frequent bugaboo of radiative transfer calculations is that a medium may 
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be transparent to certain frequencies but opaque to others. When effective scattering 
is employed, this situation offers no difficulty, since radiation is strongly scattered 
from the opaque regions of the spectrum to the transparent, where it is more 
easily transported. An additional advantage of employing effective scattering is 
that it enables the emission spectrum to be sampled in a much more complete 
way, since a sampling of the emission spectrum takes place with every scattering 
event. Otherwise an insufficient number of source particles might be available 
for sampling from a complicated spectrum. The end result of the effective scattering 
treatment of absorption and emission is a highly flexible and foolproof method oi 
calculation. 

The outline of the paper is briefly as follows. In Sections l---III the basic form 
of the radiative transfer equation is derived, including effective scattering terms. 
The resulting equation is perfectly general and may be solved by any feasible 
means, although the scattering aspects of the problem make the Monte Carlo 
method a particularly attractive candidate. Section IV is devoted to the details of 
a Monte Carlo solution of the problem, which turn out to be quite straightforward. 
Finally, a variety of numerical illustrations is provided in Section IV. 

1. SINGLE FKCQUENCY OR GREY APPROXIMATION 

For simplicity, we begin our discussion by considering the grey case without 
scattering in one-dimensional slab geometry. The equations are, assuming local 
thermodynamic equilibrium, 

hi,, I 1 

at .4 
ldp - ac7.‘l .) S. 

-1 1 
(l.lb) 

Here Z(x, t, ZL) is the specific intensity, T is the material temperature, I/,, is the 
material energy density, Z.L is the x-component of the direction vector, a is the 
radiation energy density constant, and S is an arbitrary source function. The 
addition to Eq. (1 .la) of terms representing Thomson scattering leads to no 
complications and will not be considered here. It is convenient to introduce the 
equilibrium radiation energy density variable 

instead of T. 
Defining 

1.4,. = aT4 
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we may write Eqs. (1.1) as 

By means of Eqs. (1.2) and (1.3) the problem’s nonlinearity can be characterized 
by a single multiplicative factor /3 in Eq. (1.4b). The usefulness of this form of the 
matter energy balance equation for Monte Carlo application will become apparent. 
In the case of a perfect gas with constant specific heat one can take 

u, = bT 7 (1.5) 

where b is independent of temperature. The factor j3 then becomes 

(1.6) 

If Eq. (1.4b) is integrated over an integration cycle from time tn to I~-.-~, the result 
is 

nil u, - urn 7 J‘:I’.’ dt /3u /:, I dp - c I:,“ dt /Gru, + ,:l’.‘dt /S, (1.7a) 

where u,.~ -= u,.(x, t”). If appropriate average values of the integrands are factored 
outside the integrals over time, Eq. (1.7a) becomes 

nil 
4 - UT n = A@ 11 IA dp - c[cm;-’ + (1 - rx) u,“]/ + ,&‘At. (1.7b) 

Here At = t”-1-l - P, and the superscripts A, y, and the coefficient 31 define the 
time centering, as yet unspecified, of the mean values of I, S, and U, . Solving (1.7b) 
for u:+l, yields 

n.1 _ ur c 1 - (1 - (Y)/3cAto .:_ -ET-At - ._ 
1 + NPC Ato I 

U,n 
1 : &c Ato s 

IA dp ; -.i!Atsy 
I -I- c&c Atu ’ (1.8) 

where, for simplicity, bars over /3 and u have been omitted. We are interested in 
an appropriately centered value of U, , which we write as 

11 y = r ciu :+* -/- (1 - 2) urn 

ocfla At 
1 

I”& _I_ --.-!EL a/3 AtP 
1 -I- +lc Ato 1 + a@ Atu + 1 + +cAto’ (1.9) 
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We now rewrite the transport Eq. (1.4a) with u,.’ substituted for u,. to obtain 

aol/3c A tP ’ 
13 1 + q?cAta. (1.10) 

which is presumed to be accurate over a time At. If, however, we substitute the 
instantaneous value of I for I*\, Eq. (1.10) becomes the following transport equation 
for an isotropic scattering problem with a time-independent source function. 

K& At9 
+ ; (1 -!..c;;;& + 1 I_ +jc A to . ) (l.lOa) 

Here the total cross section 0 can be thought of as being made up of effective 
absorption and scattering contributions 0, and G,$ ) where 

(I.lib) 

Obviously, as At becomes larger the effective scattering contribution becomes 
larger. In fact, as At + cc, Eq. (l.lOa) becomes 

(1.12) 

which always has a well-behaved Monte Carlo solution. The steady state solution 
of Eq. (1.12) in the absence of a source term satisfies the well-known form of the 
equation of transfer 

which describes the transport of radiation under conditions of radiative equi- 
librium [9]. 

It should be remarked that if one differences Eq. (l.lOa) in time, replacing I with 
I” in all nonderivative terms, one obtains exactly the same equation which one would 
have obtained had one proceeded by differencing Eqs. (l.la) and (l.lb) in time 
from the start. This assures us that the Monte Carlo solution to Eq. (l.lOa) will 
correspond to the solution of the appropriately time centered difference versions 
of Eqs. (l.la) and (l.lb). 
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In order to further test the consistency of the transport equation in the form 
(1 .lOa) with Eqs. (1.7) describing the material energy balance, we integrate (l.lOa) 
over direction to obtain 

where the radiation flux F is defined by 

F- pZdp. 
s 

(1.15) 

The second equality in (1.14) is simply a statement of energy conservation, implying 
that the net loss rate for radiation energy density must contribute an equivalent 
rate of gain of the material energy density. If we integrate Eq. (1.14) over the 
cycle time At, we obtain 

Combining the coefficients of u,.~, one gets 
(1.15a) 

n I-1 __ 
4 - is, fneldtIZdp 

I +aflcAtu t,, 

I 1 - (1 - 4PcAfuu;” + /3AtSY 
I 1 + CY/~C Atu 1 + q3cAtu’ 

(1.15b) 

It is seen that Eqs. (1.15b) and (1.8) become identical provided that we make the 
identification 

stn” s dt Zdp-+ At Z’dp, 
tn I 

(1.16) 

which was previously assumed in deriving Eq. (1.7b) from Eq. (I .7a). Thus, we 
can be sure that a numerical solution of Eq. (1.10a) followed by a solution of 
Eq. (1.15b) will lead to self-consistent numerical solutions, satisfying the basic 
equations (1.4a) and (1.4b). However, a scheme for updating the material energy 
density which is much superior in practice is obtained as follows. Equation (1.14) 
may, after collection of the integral terms, be written as 

au --E = 
at 1 + a;,, At s Idy. - 

cuu,n P 
1 + a/k Atu + 1 -I- o$c Atu. 

(1.17) 



IW'LICIT SlONTE-CARLO RADIATIOS TRAXSPORT 319 

The first term on the right side of Eq. (1.17) represents the rate of material heating 
due to effective absorptions. The second and third right terms represent effective 
emission and source heating rates. Obviously as the product @cdtcr goes to 0, 
Eq. (1.17) reduces to the material energy balance equation (1.1 b) with u,.~ replacing 
U, and 9’ replacing S. If Eq. (1.17) is integrated between P and P+r, the result is 

and assuming that II, can be expressed by means of Eq. (I .5): we have 

7-"+1 ..: T" .! h-1 

(i.19) 

For a nonperfect gas one substitutes Zu,JZT for h in the above equation [lo]. 
Equation (1. IOa) may be solved by any method which is feasible, but because 

of the importance which scattering plays in the problem a Monte Carlo method 
of solution seems the most practical. Once the radiation field has been advanced 
and the absoprtion rate has been calculated, the temperature can be advanced 
using Eq. (1.19), which insures total energy conservation. The values of o and ,l3 
to be employed in the calculation are to be obtained either from temperatures 
available at t” or by suitable forward extrapolation. Note that although cr or ,8 
may be reasonably rapidly varying functions of temperature, the product PV is 
normally much less rapidly varying due to the inverse dependence of G on tempera- 
ture. The centering parameter (Y should in general vary between 4 and 1. For 
sufficiently small At it may be set equal to l, but for large values of q%Ata, N must 
be set equal to 1 or else the coefficient of u ,.n in Eq. (1.15b) will be negative, tending 
to cause oscillations in the solution of u, from cycle to cycle. 

It will be noted that one very fortunate aspect of the present calculational method 
is that even though the final solution is implicit in the sense defined in the intro- 
duction, in practice it involves entirely separate and independent transport and 
energy balance calculations. 

II. SUMMARY OF MONTE CARLO PROCEDURE FOR GREY CASE 

The grey case Monte Carlo procedure can be briefly summarized as follows. 
Let us assume that I, T, and consequently U, are known at time t == tn, and that 
we wish to determine I, T, and u, at time t 7: t n+l -- tn + At. The initial conditions 
on the radiation field at time t = t” are provided by the census or “in transit” 
particles, and the temperature is assumed to be constant over each of a set of 
discrete zones of length Ax, , j --= 1, 2, 3 ,..., J [l 11. 
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1. From temperatures available at t = t”, or by forward extrapolation, 
values of p and u are determined for each spatial zone. 

2. From S appropriately time-centered and u,~ one calculates the sources 
appropriate to each space zone, generates new particles from the sources, and 
advances the solution to the transport equation 

by standard Monte Carlo procedures, utilizing both the “old” census particles and 
the “new” source particles. The solution of Eq. (2.1) will consist of the information 
contained by the census particles at time t = t 12+1. Note that the nonscattering 
source terms in Eq. (2.1) are to be considered constant throughout the time cycle, 
which means that source particles will be emitted randomly in time over the time .4 t. 

3. In the process of advancing particles in the solution of Eq. (2.1) the 
quantities 

1 + c& Ato p dt IdP r+’ s (2.2) 

are determined by accumulating the particle energy deposited as the result of 
effective absorptions within each zone. The temperature solution is advanced by 
solving for each spatial zone, by iteration, the equation 

T”+l = T” + b-l(T) ] 1 + a,c Ato I;+” dt [ Idp - 1 iA$$, ta + 1 +$&--l 
where b(T) is given by 

(2.3) 

au 
b(T) = -$- (2.4) 

for an appropriately time-centered value of T. 

III. FREQUENCY DEPENDENT CASE 

In the frequency-dependent case without scattering we must solve instead of 
Eqs. (1.4) the equations 

(3.lb) 
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where Z, is a frequency-dependent specific intensity, and B,, is the Planck or black- 
body distribution function. 

Let us write 

4 = hu, , (3.2) 

where b, is a normalized Planck spectrum at some time between tn and f?l+l, to 
be obtained by forward extrapolation of temperature if necessary. Equations (3.1) 
become 

1 2z -2 ar 
c at $ p. --Y + uJv = 1 co,b,u,. , 

3X 2 

a,I, dv dp - (.q& -!- ,/3s, ) 

(3.3a) 

(3.3b) 

where u0 is the Planck mean absorption cross section defined by 

u p = b,,q, dv. s 

l3y integrating Eq. (3.3b) from f” to t”-i’ we obtain the frequency-dependent 
analogs of Eqs. (1.7a) and (1.7b) 

zl+1 u, -- u.,.~ = /3 At 6,1vA dv dp --- &,[a~;-‘-’ -I (1 -- CI) ~l,“]( - ,&PAt. (3.4b) 

Solving for u,~ = 0~24: i1 -L (1 - X) urn, inserting into (3.3a) in the manner of 
Eqs. (1.9) and (1 .lO), and changing IVA to its instantaneous value leads to the 
following result: 

The first integral on the right side of Eq. (3.5) represents a scattering source 
for an effective differential scattering cross section 

(3.6) 
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Note that for this type of scattering, photon frequencies change, but no energy 
is exchanged with the matter. The total effective scattering cross section is gotten 
by integrating Eq. (3.6) over p and the final frequency v. The result is (reversing 
the roles of v and v’): 

crvs = 
[ 

a,& At 
uv 1 -j. @c Ato, ’ 1 

and the corresponding absorption cross section is 

[ 
1 

~“a = uv 1 + B$C Ato, 1 

(3.7a) 

where 0, :: (T,= f oyS . Note that the fractions of u, devoted to absorption and 
scattering are independent of frequency. Equations (3.7a) and (3.7b) should be 
compared to Eqs. (I .l la) and (1.1 I b) for the grey case. Tf Eq. (3.5) is intcgrated 
over v and TV, the result is 

1 a * 
c at JI 

aF -. - dv dp I, .!- Et = - 
IJ * dv dp dv -I- ( 

a/k Ato, 
-) j-j- dv dp a,z, 1 + @c Ato, 

+ ” CU,U, 

1 - cw/3c Ata, + 
upcx/3c At9 

1 + LX@ Ato, 

au, ZE- - i- s’, 
at 

where the radiation flux F is now defined by 

F = 1s I,p dp dv. 

Combining terms, we get 

c?u, 1 
J-1 

CUP% 
n 

S’ 
7-p 

at 1 $ (Y/~c Ata, 
dv dp oVIV - 1 + $c Ato, + I + a@ Ata, 

Equation (3.8) should be compared to Eq. (1.14) and Eq. (3.9) to Eq. 
solution to Eq. (3.8) analogous to Eq. (1.15b) is 

n+1 u, = ’ fn+‘dt j-1 dv dp oVIV 
1 -I- cq3c Ata, t,, 

+ 1 ---(I --or)Pc‘hu,~+ /3sy At 
1 -I- cu/3c Atu, 1 + c$k Atu, ’ 

(3.8) 

(3.8a) 

(3.9) 

(1.17). The 

(3.10a) 
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while the solution analogous to Eq. (1.19) is 

‘-’ 7-“T’ :- I”” + 1 ..;- ,-&! A to, / ,,” IjI’+’ dt jj dv dp (& - c Ato,u,n !. 9 At/. 

(3. !Ob) 
Again, as in the grey case, for stable solutions of Eq. (3.10a) we require that 

(1 -- 2) /%Atu, 23 1. (3.12) 

The consistency between Eqs. (3.4) and the source terms in Eq. (3.5) is readily 
demonstrated by means of Eq. (3.10a). 

It is easily shown that Eq. (3.4) is satisfied by the correct equilibrium solution 
I, = icBy when 

Equation (3.5) becomes, in the absence of an external source term, 

a,I,, = i a,b, 
[ 

afic At 1 IS ~~‘1,’ dv’ dp’ !- dV4 - 
2 1 -I- u,& Ata, 2 1 -j. $3~ Attr, ’ 

(3.13) 

(3.14) 

where the superscript on u,. has been dropped. If we set I,, = :ch,,llr in the integra! 
term on the right side of Eq. (3.14), the equation becomes 

If 

.zz +,cb,u, -= &r,cB, . 

but gradients are present, Eq. (3.5) becomes, in the limit At - t ZC, 

(3.16) 

The form of Eq. (3.16), which is the frequency-dependent analog of Eq. (I. 13), 
should be obvious from Eqs. (3.3) upon setting 
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i.e., the case of radiative equilibrium. The difficulty of solving Eq. (3.16) lies in 
the fact that u, and b, depend on temperature, which must satisfy the relation 

1 a-p -~. --- 
cu,(T) il u,.l, dv dp. 

But by utilizing Eqs. (3.5) and (3.10b) in a time-dependent approach and allowing 
the numerical solutions for T and 1, to approach a steady state, the simultaneous 
pair of Eqs. (3.16) and (3.17) is readily solved. 

IV. MOSTE CARLO PROCEDURE APPLIED TO THE FREQUENCY DEPENDENT CASE 

For clarity we repeat the basic equations which must be solved in the absence 
of real scattering. These are 

-t- u,,J 1” .-. 

-k .;fcu,b,u7” + $( 1 - f)(uybJu,) S’, (4.1 a) 

(4.lb) 

(4.lc) 

(4. Id) 

(4.le) 

Again, in Eq. (4. le) T represents an appropriately time-centered temperature. 
The basic steps and considerations involved in a Monte Carlo solution of 

Eqs. (4.la)-(4.le) are outlined as follows 

A. Cross Section Data 

If the transport medium is optically thick and u, contains considerable detailed 
structure, it may be necessary to calculate u, by a table lookup procedure. For 
optically thick media, the effective scattering cross section is in general large, 
which leads to many scattering events. Each scattering event requires a new 
calculation of 0” , making it necessary to calculate uv quickly. The spectrum u,b, 
must also be available under the same conditions requiring the tabulation of the 
quantities 

F(Q) = ,: u,b, dv, 
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and vj, where the Vj define equal increments 

Al+,) = F(Q) - F(!+J (4.2b) 

in F(v), the unnormalized cumulative spectral distribution function. The sampled 
fequency v is then calculated by using the truncation of a random number to find 
a value of k, followed by an interpolation between the appropriate values I’;; and 
ykml . The tabulation of the cross section data should be available for the same 
1)/C values. It should be emphasized that the speed of the calculation is in no way 
affected by the size and complexity of the cross section data tabIes and that because 
of the effective scattering feature of the calculation the sampling from the spectrum 
is much more accurate than could be achieved with a limited number of source 
particles alone. 

An alternative scheme is to represent the various contributions to absorption 
by simple analytic dependences such as 11~” for free-free absorption and bound- 
free absorption edges and Gaussian shapes for lines. It is then possible to express 
a&,, as 

(4.3a) 

where the ,f,(v) are normalized emission distribution functions related to each 
contribution, e.g., edges, lines etc., and the pn denote the weights of the individual 
contribution, or the.f,(u) may refer to individual pieces of the compkte emission 
spectrum. The pn must, of course, satisfy 

In order to sample from the distribution (4.3a) it is first necessary to sample 
from the discrete distribution pn to determine 11, and then to sample from the 
corresponding distribution fn(v), which is easily done. 

If 0,. has the form 

then n,,b, becomes 

a,, = (1 - e+/LT) flp, (4.4) 

(4.5) 

where use has been made of the expression 

(4.6) 
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One also obtains 
8~0 kT up = - 

i-1 c3 u, ? 

and, for constant b, 

32rrD k 
BuTI = 7 (Tj. (4.8) 

The calculation of Us , /3uP , and f is carried out and stored for each spatial 
zone at the beginning of each integration cycle. 

B. Apportionment of Source Particles 

Source particles are assigned to spatial zones and radiating surfaces in numbers 
which are roughly proportional to the amount of energy radiated in the particular 
location during the current integration cycle. At the beginning of the problem 
a fixed number of source particles Ns is injected during each cycle. If this number 
is wisely chosen, the attrition of particles by absorption and escape will insure that 

NC + Ns < N, (4-9) 

where NC is the number of census particles waiting to be processed at the beginning 
of the time cycle, and N is the total number of particles for which storage space is 
available. Actually Eq. (4.9) allows a certain amount of leeway since the number 
of particles surviving the integration cycle and needing storage will be less than 
NC + iVs . Whenever possible, Ns is chosen to be an input number 

Ns = Nsl, 

but if condition (4.9) cannot be met, Na is taken to be 

(4.10) 

Ns=N-No--z---l, (4.11) 

where Nz is the number of space zones in the problem. Experience has shown 
that condition (4.11) insures stabilization of the census population without overly 
reducing the number of source particles. 

If the surface of the slab x = 0 is kept at a fixed temperature TO, the total 
energy radiated from that surface during an integration cycle of duration d t is 

Es = F TO4 At, (4.12) 

while the source energy radiated by cell j - 9 is 

EMI, = fC%/J ~&7-~/J CU;-~,~ Ax At + [l - f(T&)] Sjy-1,2 Ax At. (4.13) 
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Depending on circumstances, accuracy may be improved by employing forward 
extrapolated temperatures in CalculatingSand ug . The total source energy radiated 
is 

-&OT = Es -i x 15...~,, . (4.14) 

The number of surface source particles is taken to be 

N S.RF _ int (s) .{. 1, 

and the number of source particles in zonej is taken to he 

(4.15a) 

where int signifies the integer part of the argument. 

C. Source-Particle Initial Data 

The energy of each surface source particle is given by 

eSURF 2 (aci4) To1 AtjNSURF , 

while that of volume source particles is 

(4.16a) 

c;-~:~ =: E,-l:,,iN,-, T’L . (4.16b) 

The frequency of surface source particles is obtained by sampling from the 
normalized blackbody distribution 

b(x) = ; x3/(6? - I). (4. i 7a) 

v = (kT/h)x. (4.17b) 

An efficient scheme for accomplishing this, based upon a series representation of 
the Planck function and developed by C. Rarnett and E. Canfield (12), is detailed 
in Fig. 1. The eficiency of this scheme is 1.1 trials per selection. The frequency 
selection for volume source particles has already been outlined in Section 1V.A. 
When Eqs. (4.4) and (4.5) apply, it reduces to 

v = (kT/h) ’ In r i, (4. IS) 

where r signifies a random number distributed uniformly within the intcrvai 
fromOt0 1. 
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The positions of volume source particles are uniformly distributed within the 
zone of origin, i.e., for zone j - 4 

x = X$-l + T(Xj - x+1), (4.19) 

where xi and xjBI are coordinates of zone interfaces, while the direction cosine p 
is uniformly distributed between - 1 and 1: 

p = 1 - 2r. (4.20) 

PKK R.N.S 

‘,,‘y’y’4 

t 

SET x = -;-Vn(r,r2i3r4) 

t 

END 

IjIc. 1. Flow diagram for selection of frequencies from a Planck or blackbody spectrum. 

The position of the surface source particles is of course x = 0, and the direction 
cosines are distributed according to 

or 
f (PI = 2P, (4.21) 

p = max(r, , rz). (4.22) 

The emission time for source particles is uniformly distributed over the integration 
cycle, or 

t = t” + r(P+l - P). (4.23) 
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D. Geometry 

The geometry calculation consists of determining the distance traveled by a 
particle 

d = min(&, 420~~ &d (4.24) 

where LJ B , dcoL , dcEN are respectively distances to a boundary crossing, a scattering 
collision, or to census. For a particle in zone j -- .i. these quantities are 

dB _ ih - N/P if p>O, 
\(xjel - x)/p if p < 0, 

(4.25a) 

dcoL = j In r l/(1 -j&& uY , (4.25b) 

d,,, := c(t”” - t). (4.2%) 

If either I& or dcces are selected, particle data are advanced according to 

x’ 7 x -I- pd, (4.26a) 

I’ = t -.I- d/c, (4.26b) 

E’ = Ee-fo&, (4.26~) 

v’ .: v, (4.26d) 

p’ zz p. (4.26e) 

Here E’ and E refer to energy carried by the particle. The particle’s energy loss 

AE = E(1 - e-f+) (4.27) 

is added to the total radiation energy 8j-1,2 already deposited in the zone. !f E’ 
is less than or equal to 1 x of the particle’s energy at birth, the particle is eliminated, 
and its total energy is added to c?+~,~. If cl I= dcEN the particle’s data are stored 
for use in the next integration cycle. If d = dB , a new value of 0, is caiculated, 
and the geometry routine is reentered. 

Should dcoL be selected, x’, t’, and E’ are advanced, energy is deposited as 
before, and v’ is selected by sampling from the volume source particle frequency 
distribution, e.g., Eq. (4.18). A new value of 0, is calculated and the direction 
cosine is chosen to satisfy Eq. (4.20). The geometry routine is then reentered. 

E. Energ), Update and Energy Check 

The updated temperature is obtained by solving Eq. (4.le) or 

T;$$, = T;& -I- b-1(TS”_:‘,:‘>~~~-1,2/Ax-f;.--1,2cAt u95 1/2 0 l/S + 5--l/2 _ u ” f S ,‘-I/2 At) 

(4.28) 
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In such calculations it is usual to calculate an “energy check” which is defined as 

E CHK = (Einp - &d/&q 3 (4.29) 

Where Einp is the net energy input into the system and Eint is the total internal 
energy of the system consisting of both the radiation and material energy. Since 
the application of Eq. (4.28) enables us to carry out the energy bookkeeping 

1.2~, , 
I I I I 

. IMC 

FIG. 2. Radiation penetration of a slab heated by 1 KeV source at x = 0. Comparison 
between implicit Monte Carlo (IMC), semiimplicit Monte Carlo (SMC), and multigroup tele- 
grapher’s equation solutions (MTE) for temperature distribution. Cross section has l/v3 de- 
pendence given by Eq. (5.1); Ax = .4 cm, At = 2 x 1O-3 sh for IMC. 

exactly, in principle, the energy check should be limited only by the accuracy of 
the computer in carrying out arithmetic operations. In the case of the CDC 7600 
this leads to values of the order of IO- 12. For larger values than this one should 
suspect programming errors. 

One can also use the exact energy balance method in a purely explicit scheme, 
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in which case f = 1 in Eqs. (4.1) and (4.26). Unfortunately, this scheme is known 
to be unstable for 

2 
y c 

c 

0 

0 

.4 c 

.2 

I 

.2 
I 

11 I / I 

. ai =2x 10-3 &&es 
AX=O.‘tClll 

rct=6cm 
x a: = 1 X10-2rhokei 

i 

(4.30) 

FIG. 3. Comparison between IMC temperature solutions for Ax = .4 cm, At = 2 x 10 3 sh, 
and Ar =L- I x lo-% sh, cross section given by Eq. (5.1). The scattering fraction 1 - fin the two 
cases arc .944 and .988, respectively. 

i.e., when At is roughly equal to the relaxation time for the matter temperature 
to equilibrate with the radiation field. An explicit scheme which has improved 
stability is obtained by setting f -= 1 and replacing ~(Tin_,~,) with u(TF-&,) in 
Eq. (4.28) and solving the resulting nonlinear equation by an iterative method [l]. 
This method, sometimes referred to as “semi-implicit,” does not conserve energy, 
and energy checks in typical problems may run as high as 20%. By employing 
effective scattering, one has the double advantage of both exact energy conserva- 
tion and what appears to be unconditional stability. 
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V. NUMERICAL EXAMPLES 

A comparison of an implicit Monte Carlo (IMC), a semi-implicit Monte Carlo 
(SMC) (see above, Sec. IV-E), and a 27-group telegrapher’s equation calculation 
[13] is shown in Fig. 2 for a slab 4 cm in thickness, heated by a 1 KeV blackbody 
source at x = 0, and having a macroscopic cross section given by 

1, 

I. 

0. 

P 
; 0. 

c 

0. 

0.. 

/ 

27 

o- 

8- 

6- 

‘l- 

2- 

ILL 
0. 

0” = $ (1 - e-u/T) cm-l, 

I I 1 I 1 

l nr=2x10drhokes 
Ox=O,4cm 

,To 1.628 

xA.r=2x10-zrhoker 

oAt=5xlO-*shakei 

(5.1) 

FIG. 4. Comparison between IMC temperatures for Ax = .4cm, t = 2 x 1O-2, At = 5 x 10m2sh. 
Cross section given by Eq. (5.1). Scattering fractions are .944, .994, .998, respectively. 

where v, and T are measured in keV. This cross section, it will be noted, has a 
value of 1.0 cm-l for v = 3 KeV, which is approximately the frequency for which 
a 1 keV blackbody spectrum peaks. The temperatures in all zones are set equal 
to .OOI keV initially to keep ep finite. The vaIue of b for this and all subsequent 
figures is taken to be .5917 a To3. The resulting scattering fraction for the IMC 
calculation is constant with temperature and equal to 94.4 % with CL = 1. At late 
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b At=Zxlt+ihoker 
AX=O.,b‘m 

x ~t=2xiO~~&akes 
Ax=O.4cm 

0 At =2 Y 1"-3 rhckri 

FIG. 5. Tcmperaturc distributions calculated by IMC for three diflerent spatial ZOIK sizes: 
dx 7: .16cm, Ax -.: .4cm, and Ax = .8 cm and cross section given by Eq. 5.1. 

times the SMC calculation has an energy discrepancy, EcHK - 20 f:,. In addition, 
for ct = 90 cm, by which time equilibrium has been established, the SMC calcu- 
lation has been averaged over 50 cycles to smooth fluctuations. No averaging 
of the IMC has been used. Both calculations employ the same spatial step size 
dx = .4 cm. The IMC calculation utilizes a constant dt - 2 >: lo-’ sh 
(1 shake = lo-* sec.). Information is unavailable on the SMC integration cycle 
times for this particular calculation, but an SMC calculation with the same pare- 
meter values and yielding substantially the same results was carried out with an 
average dt - I.7 x 1O-3 sh [14]. A purely explicit calculation would become 
unstable for dt - lo-” sh. In all 1MC calculations reported here, cross sections, 
f-values, and blackbody spectra have been calculated using temperature values 
available at the end of the previous integration cycle. Except as noted above, the 
1MC and SMC calculations appear to be in reasonable agreement. 

Figures 3 and 4 illustrate the stability of the IMC solutions with increasing 
values of dt, Jn Fig. 3 the ct = 6 cm curve for dt z= 1.0 x 1O-2 sh is slightly high 
for the zone nearest the source, but by the time ct = 15 cm the solution has 
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corrected itself. In Fig. 4 the et = 6 cm curve is inaccurate near the source for 
fit = 2 x 1O-2 sh, although the remainder of the curve does not look bad. By 
the time ct = 90 cm, the d t = 2 x 1O-2 sh solution is accurate. Note also that 
for ct = 90 cm the Lit = 5 x 1O-2 sh solution is also accurate with the exception 
of the zone closest to the source. In the latter calculation the problem was com- 
pleted in only 6 integration cycles ! Undoubtedly, results for large time cycles 
could be improved by employing forward extrapolated temperatures in the calcula- 
tion of temperature-dependent parameters. Figures 3 and 4, however, lend consider- 
able credence to the assumption that IMC is unconditionally stable and that 
cycle durations can be chosen solely on the basis of accuracy considerations. 

Figure 5 shows the influence of zone size on the temperature distribution. It is 
seen that decreasing the zone size from .4 cm to .16 cm does not improve the 
accuracy of the solution but instead introduces a slight spatial fluctuation. Figure 6 
shows the effect of decreasing the time cycle for a .16 cm zone problem. A time 
cycle of 2 x lo-* sh enhances fluctuations slightly. Figure 7 is a comparison of a 
“fully” implicit calculation with 01 = 1 and a “partially” implicit calculation with 

1.2 , , I I I 
*At=2 x 10-4rhoker 

I 

*x=0.16 cm 

+At=2x10-3rhoker 

1.L 
Ax=0,16cm 

FIG. 6. Temperature distributions for 2 different values of dt: At = 2 x low3 sh and At = 
2 x lo-* sh, cross section given by Eq. (5.1) and Ax = .16 cm. 
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01 = 4, both for dt = 2 x 1O-4 sh and Ax = .16 cm. The scattering fractions are 
43 % and 46 %, respectively. Fluctuations tend to be greater at later times for the 
01 = + calculation. This effect should be only partially attributable to the fact 
that the oi = 1 case is run with a slightly larger mean population. One can conclude 
from Figs. 2-7 that by running with large time steps and, consequently, large 
scattering fractions the tendency is for statistical fluctuations to be reduced. 

1.2 
I I 1 I 

FIG. 7. Comparison of “fully” implicit, a! = 1, and “partially” implicit u - 112 calculations of 
temperature for At = 2 x 1O-4 sh. Scattering fractions are 1 - f .L 63 % and 46 %, respectively. 
History numbers at different times are indicated. 

Figure 8 shows the effect of including an additional T-5/2 dependence of cross 
section on temperature, where 

uv = $&, (1 - e-u!=) cm-.l. (5.2) 

The temperature in all zones is initially set equal to .Ol KeV in order to keep the 
cross sections finite. Despite the fact that initially scattering fractions go as high 
as 99.94 % and cross section values exceed those of Eq. (5.1) by a factor of lo”, 
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no calculational difficulties are encountered. Although in the case of Eq. (5.2) 
the break in the radiation front is more abrupt, it will be noted that, behind the 
front, temperatures exceed those for the case of Eq. (5.1). 

Figures 9A and 9B show results of both temperature and radiation energy 
density calculated for the case of an absorption edge at v = 3 KeV. The cross 
section assumed is 

0, = 54 

/ 

2) (1 - e-“IT), v < 3 KeV, 
(5.3) 

T;“;- (1 - e-YQ v > 3 KeV. 

The radiation energy density is calculated by averaging over particle tracklengths 
in each zone. As would be expected, the radiation penetrates more rapidly than 
the equilibrium radiation energy density variable U, . The criss-crossing behavior 
of the radiation energy density and u,. curves for et = 90 cm is due to fluctuations 
inherent in solutions at equilibrium. 

(27/v3)(, -e-V'T). At =2~10-~rhokei To = 1 ke" 

ax=0.4 cm T,(x)= 0.001 k&J 

-e-VA). Ar=Z~lO-~shaker To = 1 kev 

ax=0.4cm T,(x)=O.Ol keV 

FIG. 8. Comparison of temperature distributions for cross section calculated by Eqs. (5.1) 
and (5.2). Equation (5.2) differs from (5.1) by factor T-3/2. 
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RG. 10. Slab penetration At = 2 x lo-$ sh, Ax = .4 cm, single opaque zone extending from 
x = 2.0 to x = 2.4, uV = (10,000/~~) x(1 - e-v/Q Otherwise u,, given by Eq. (5.1). (a) Temperature 
pro&s. (b) Comparison between equilibrium radiation energy density z+ = rzT4 and actual 
radiation energy density I/c. 
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The utility of the effective scattering method when optically thick media are 
encountered is illustrated in Fig. 10. The conditions for Fig. 10 are the same as 
for Fig. 1, except that in the zone extending from x = 2.0 to 2.4 cm the cross 
section is assumed to be given by 

In the opaque zone the Planck mean cross section uD varies from a maximum 
of 1012 cm-’ at the start of the problem to a minimum of 2 x IO3 cm-l by the 
end of the problem, compared with a minimum value of -5 cm-r in the trans- 
parent zones [I 51. The examples of Figs. 8 and 10 indicate that difficulties or 
complications with the method are not anticipated when cross sections become 
!arge? although if large regions of the problem contain highly opaque materials, 
one may be forced to pay a high price in computing time (see Table I). 

TABLE I 

Comparison of Characteristics for Various Implicit Monte Carlo Calculations 

Particle Running Scattering 
Cycles So. final time (rrrin) fraction 

Figure 0” (Eq.) dx(cm) At(sh) (No.) Ns cycle CDC7600 (I -f) 
----. 

Not shown (5.1) .4 2 x IO-’ 1500 500 12,134 13.0 .628 

2,3,4 5 (5.1) .4 2 x 10-z 150 1000 Ii:175 5.90 .944 

5,6 (5.1) .I6 2 x IO 3 150 loo0 11,283 6.5 .944 

3 (5.1) .4 1 x IO-2 30 3000 12,303 5.85 .98S 

4 (5.1) .4 2 x 10 * 15 4000 6,186 5.10 ,994 

4 (5.1) .4 5 x 10 * 6 5000 8,132 6.5 .99t3 

4 (5.2) .4 2 x 10-d 1500 200 4,996 16.24 .9994’; 

9 (5.3) .4 2 x 10-S 150 500 5,939 2.84 ,938 

10, lib (5.4) .4 2 x 10-S 60 SO0 6,166 44.3 .9998” 

(1 First cycle. 
Fifth zone. 

Calculations of zone spectra are displayed in Figs. 11 and compared with 
blackbody spectra at the appropriate zone temperatures. Figure I la is for the 
calculation of Fig. 2 and applies for ct = 90 cm and for the zone centered at 
x = 1.4 cm. Figure 1 lb is for ct = 12 cm and for the opaque zone in the problem 
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FIG. 11. Zone spectra over singIe integration cycle compared with blackbody spectrum at 
zone temperature. (a) Zone centered at x = 1.4 cm, ct = 90 cm, temperature distribution shown 
in Fig. 2, (b) Opaque zone centered at x = 2.6 cm, et = 12 cm, temperature distribution given 
in Fig. 10. 
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of Fig. 10. These spectra were calculated by path length averaging in the appro- 
priatc zones and represent the spectra as “seen” by the calculation. 

Characteristics of various runs are compared in Table 1. Although variations 
in particle populations for the different cases make accurate comparisons in 
running time difiicuit, it may be concluded that, given like numbers of histories, 
the implicit Monte Carlo method leads to improvements in running time as 
integration cycles are lengthened, at least up to a point. As the scattering fraction 
1 f approaches 1.0, the problem running time is governed primarily by the 
length of time necessary to perform a particle scattering and by the frequency 
of particle scatterings. If f is exceedingly small, many scattering events may be 
required before a particle comes to extinction. Therefore, exceedingly large vahles 
of dt may not guarantee the shortest problem running times. In fact, experience 
indicates that when the scattering fraction exceeds 99 y,,,, increasing the time cycle 
may icad to diminished returns. One may therefore elect to control the time step 
so that ./is never below 1 T;,. It may be practical, on the other hand, to arbitrarily 
set a lloor of 1 u: beneath f regardless of time step size, since the derivation of 
Eqs. (4.1) only limits the maximum value of J Clearly. further cxperimcntatioc !s 
required to determine the most efficient method of operating with implicit Mcn1.e 
Carlo. 

One should. at the very Icast, expect substantial improvements in running 
times over those required by a completely explicit scheme in which the integratio;! 
cycle is controlled by stability considerations. Here an important distincticr. 
bctwcen the implicit and explicit schemes needs to be pointed out. In the cast o! 
an explicit calculation, essentially the same amount of work must be done in a!i 
701?cs with the value of dt governed by the zone where instability is most likely 
to occur, usually the most opaque zone of the problem. In the case cf the impiicit 
method the most calculation is, in general, required for the most opaque zones 
and the least for the transparent zones. This feature alone shouid lcad to significan: 
savings in calculation time for the implicit over the explicit scheme. In addition 
it should be possible to operate the implicit scheme with a smaller number of 
particles for a given level of statistical accuracy. 

It should bc mentioned, finally, that for the second and last problems of Table I 
a reduction by one-third from the running times listed could bc achieved by 
calculating all exponentiais and logarithms through a table lookup procedure. 

The conclusion to be drawn from these numerical studies is that the impiicit 
Monte Carlo treatment of nonlinear radiation transport problems leads to a 
significant improvement in accuracy, stability, overall flexibility, and computa- 
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tional efficiency, over the explicit methods which have been previously employed. 
While the implicit Monte Carlo method does not offer a complete panacea for all 
running time problems, it does make feasible the solution of a wide range of 
problems within the framework of a single calculational method, which smoothly 
spans conditions ranging from those where pure transport theory applies to those 
which normally require the application of diffusion theory. 
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